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1. WORK OVERVIEW

The first section in this report serves as a brief overview of the work. The second section
describes an analytical theory of the reflection and transmission of light from nonlin-

ear optical interfaces. The third section presents an application of the general theory to
some simple nonlinear waveguide configurations. The last section deals with a very im-
portant aspect of above-threshold ionization, namely, the intensity dependence of total
versus differential ionization rates.

1.1 GENERALIZATION OF THE LAWS OF REFRACTION AND REFLECTION

FOR A NONLINEAR INTERFACE

We have generalized Snell's and Fresnel's formulas of reflection and refraction for the

case of a nonlinear interface. We have explicitly dealt with the case when a plane wave
is incident from a linear medium onto an interface with a medium of Kerr-type nonlin-

earity. We have investigated an incident transverse electric (TE) polarized wave, positive
nonlinearity constant in the nonlinear medium, and totally reflecting interface at low in-

cident intensity.
Our results can be summarized as follows. We could show that the solutions of the non-
linear wave equation, describing stationary behavior, fall into three categories:

1.1.1 Uniform phase wave. The amplitude is inhomogeneous, depending explicitly on
the position in the nonlinear medium. This wave plays a crucial role in the regime of

total internal reflection (TIR).
1.1.2 Uniform amplitude wave. The phase is that of a plane wave, but with wave vector

depending on the intensity. This wave is excited in the nonlinear (NL) medium in the
entire regime outside that of TIR, and also above a certain intensity threshold in the

regime of TIR.

1.1.3 Inhomogeneous phase and amplitude waves. These waves play some role in a small
part of the TIR regime and at extremely high incident intensities. Therefore, they are
hard to observe, and nonstationary phenomena will probably be highly competing. By

matching the above nonlinear waves with the linear incident and reflected waves at the
boundary, we managed to generalize Fresnel's and Snell's formulas for the case under
consideration. Outside the regime of TIR (incident angle 9, < 9,, where 0, is the criti-
cal angle for TIR) the usual Fresnel's and Snell's formulas hold with the index of refrac-
tion in the NL medium being the actual intensity-dependent expression. In the regime

of TIR, 0, < 0, < 7r/2 , we defined a second critical angle 0o. In the interval 0. < 8, <

00 TIR is maintained up to a certain, relatively low, incident intensity Io. Above this



threshold TIR is lost and normal reflection and refraction takes place. The nonlinea:

evanescent waves of 1.1.1 go continuously over into the NL radiation wave of 1.1.2. We

derived explicit expressions for the phase shift and reflectivity associated with phenom-

ena in this 8, < 6i < 6o interval, both for I < I0 and I > Io.

In the interval 00 < 9, < 7r/2, TIR is maintained up to a relatively high incident inten-

sity 10. Above this threshold TIR is lost and, since the inhomogeneous waves of 1.1.3 are
extremely sensitive to small perturbations, nonstationary phenomena (i.e., generation of

pulses) take place.

1.2 INTRINSIC PROPERTIES OF NONLINEAR TE WAVES GUIDED BY A

SYMMETRIC SLAB

We have shown, by an appropriate scaling of parameters characterizing the nonlinear

TE guided modes of a symmetric slab (linear core embedded between two identical me-
dia with Kerr nonlinearity), that their mutual dependence (dispersion relations) can be

given by particularly simple expressions. This permits us to determine the range of vari-
ation of these parameters and the conditions for the appearance of asymmetric waves
and surface modes. It also hints at the possibility of bistable switching with hysteresis

between different branches of the dispersion curves.

1.3 INTENSITY DEPENDENCE OF TOTAL VERSUS DIFFERENTIAL

IONIZATION RATES IN ABOVE-THRESHOLD IONIZATION

Above-threshold ionization (ATI) refers to the ionization of an atom by an intense laser

field, such that the ejected electron absorbs more laser photons than is necessary for ion-
ization. The energy spectrum of the ejected electrons thus consists of separate peaks

corresponding to the absorption of 0, 1, 2, ... photons beyond the minimum number.

The heights of the peaks, i.e., the partial ionization rates, are strongly dependent on the

intensity of the laser field. For fields with an intensity > 101 W/cm 2 their intensity de-
pendence can no longer be explained in terms of perturbation theory with respect to the

laser field. In contrast, the total ionization rate, i.e., the sum of all the partial rates, is
strictly proportional to PN with N the minimum number of photons which have to be

absorbed for ionization. This striking behavior has been observed in all pertinent ex-

periments up to I > 1014 W/cm 2 . It is also exhibited in computer simulations for the

hydrogen atom. The same phenomenon has also been observed (theoretically) in nuclear
beta decay in an intense laser field, where the total decay rate is unaffected by the field

2



up to the critical field strength, while the differential rates are already dramatically dis-

torted by fields which are less intense by ten orders of magnitude. In both cases, this

phenomenon is due to the fact that the ionization or decay takes place much like a two-

step process. The first step is the actual ionization or decay, while the second step is a

final-state interaction between the laser field and the ejected electron, in the process of

which the electron energy is redistributed. We have started, based on previous experi-

ence with nuclear beta decay, to attempt to justify this two-step assumption from first

principles. In particular, we want to find out up to what intensity the I ' dependence

will persist.

These specific areas of investigation are described in detail in the following sections.

3



2. GENERALIZATION OF THE LAWS OF REFRACTION AND
REFLECTION FOR A NONLINEAR INTERFACE

2.1 INTRODUCTION

We derive a wave equation describing stationary phenomena along the interface. The

solution in the linear medium is the usual plane-wave one. We show that in the NL

medium the solutions fall into three categories: (a) waves with a constant phase (nonlin-
ear evanescent waves), (b) waves with constant amplitude (nonlinear plane waves), and
(c) waves with nonuniform amplitude and phase. From the boundary conditions (match-
ing the tangential components of the electric and magnetic fields at the interface), we

obtain the NL generalization of the Fresnel formulas. The implication is the following.

Let n, stand for the index of refraction in the linear medium (e, = n2 is the dielec-
tric constant) and n2 the linear part of the index of refraction in the nonlinear medium

(c2 = n2 is the linear dielectric constant in the NL medium). If n 2 > n1 , then in the
entire interval 0 < 0 < 7r/2 of angles of incidence 9 (9 is measured from -the interface

and not from the normal to it), the waves in the NL medium are the nonlinear plane
waves and the phenomenon is very similar to the phenomenon at a linear interface. In

particular, everywhere in Fresnel's and Snell's formulas e2 should be replaced by the
intensity-dependent expression C2 + aIE2 I2 (a nonlinearity constant, E2 amplitude in
the NL medium). If n2 < n1 then in the 0, < 8 < ir/2 interval (cos 2 8 = C 2/El), the
situation is similar to the n2 > nj case. In the interval 0 < 9 < 0,, TIR is possible up to

a certain critical intensity I,, = ,, (0).

Our main conclusion is that in this interval there exists a second critical angle 0o (sin2 90

s sn 0 or approximately 8o = 0 /V2), such that in the interval 00 < 9 < 9, the non-
linear evanescent waves exist up to a certain critical intensity 1,,, and at this intensity
they go continuously over into the nonlinear plane waves; i.e., in this interval the critical
intensity (upper limit) of TIR coincides with the threshold intensity Irh (lower limit) of
the nonlinear plane waves. In the 0 < 9 < 0, interval, however, I,,. > Ih, and in the

intensity range Ilh < I < I,, both waves are possible. Which one of them will exist
at a given intensity depends on the past of the system (hysteresis in the reflection as a

function of intensity being one possible consequence). A linear stability analysis confirms
these findings and leaves no room for the nonuniform amplitude and phase waves. Thus,

their existence requires further study.

i4



2.2 GEOMETRY, WAVE EQUATION, BOUNDARY CONDITIONS

We deal with the geometry described in the following.

A plane wave with amplitude E0 is incident on the interface between a linear medium

(dielectric constant e,) and a nonlinear medium with Kerr-type nonlinearity (dielectric

function e2 + a E21 ). The wave is incident from the linear medium, its amplitude is E,
and the angle of incidence is 0. The amplitude of the reflected wave is rE0 ; r is the re-

flection coefficient. The incident, reflected and refracted waves are all polarized perpen-

dicularly to the plane of incidence, along the y-axis (TE polarization). The amplitude of

the transmitted wave is E 2 .

According to the assumption about TE polarization, we look for the electric field E and

magnetic field Hf in the form

E = (0, E(x),0)e=(BWt); ((H.(z),OH.(x))e'(Daw)()

Here w is the frequency and / is the propagation constant, related to the wave number

in vacuum k = w/c, index of refraction n, = VIET , and angle of incidence 0 as 0

k2e, cos2 0.

Obviously div E = 0. From curl E - -- we obtainC at

dE
H.= -(3/k)E; H. = k) (2)

Using these equations one can see that div H = 0 is automatically satisfied. From curl

H -t-- we obtain

dH,
z--' + keE + OH. = 0 (3)

dx

with

J{,, if x<0 (4)

e1 2+aJE 2 I2 if x>0

5



Using Equation 2 in Equation 3, we can eliminate H, and H, and obtain

E k2E - ,2E =0 ()
dx2 '

which is our starting equation.

Boundary conditions require continuity of the tangential components of the electric and

magnetic fields at the interface, z = 0, i.e., continuity of E. and H,. In view of Equa-

tions 1 and 2, this means

E and E' continuous at : = 0 (6)

Equations 5 and 6, together with the definition of k, c, and 3, form the basis of the the-

ory.

2.3 SOLUTION OF THE WAVE EQUATION IN THE DIFFERENT REGIONS

2.3.1 Solution in the Linear Medium

From Equation 4 we find that in the linear medium (x < 0)c = el. Using this in

Equation 5 yields

E" +k2E=0 (7)

* with

I k2e1 -2 =k 2  sin 2 9 (3)

k, is just the z component of the full wave vector kVIT'. The solution can be written as

the sum of an incident and a reflected plane wave:

E(x) = Eoe,2' + rEoe- 'k -z, x <0 (9)

where E 0 is the amplitude of the incident plane wave and r is the reflection coefficient.

6



2.3.2 Solution in the Vonlinear Medium

From Equation 4 we find that in the nonlinear medium (z > 0)e = e3 -- a;E;. Using this

in Equation 5, we find

E" - - 3E - k 2 ajE:2 E = 0 (10)

In the rest of this section we categorize the possible solutions of this equation.

2.3.2.1 Uniform Phase Wave (Nonlinear Evanescent Wave)

Assume that E = E 2 (x)e' where E2 is real. For this case

E21- 
2 E2 + ck 2Eg = 0 (11)

where '72 = - k' 2 . A first integral can be found by multiplying this equation with

E:' (= dE_) It is given by

(E2) 2 
-

2E2 + 1 crk2 E" = const. (12)

For evanescent waves -72 > 0 (i.e., cosO > cos9c - ;0 < 0 < Oc) and both E2 and

E' - 0 if x - oo, hence const = 0. It is then straightforward to integrate Equation 12

once again, yielding

E 2 = It= - or E = E- e" (13)
akcash[-y(x - z0) I

Here xo is a constant of integration to be determined from the conditions of continuity.

A constant phase and amplitude wave (E' = E"' = 0) can also be found from Equation

11 or Equation 12:

aEl = eL cosE L (14a)

or

7



E1 cos 2 B = aE, + e2  (14b)

This corresponds to an intensity which makes a given incident angle critical, the right-

hand side of Equation 14b being the square of the effective index of refraction in the

nonlinear medium.

Solutions of Equation 12 for an arbitrary constant can be expressed in the form of ellip-

tic integrals. We come back to this in 2.3.2.3.

2.3.2.2. Uniform Plane and Amplitude Wave

Assume now that E = E2 es(2 2+IPI where E 2 = const. From Equation 10 we find that

this is possible if

k2 = k2 (E2 + C1E 2 12) - 32 > 0 (15)

If E. > E , such a wave always exists. If e2 < e, then for el cos2 0 < C2 (0 > e0) such

a wave exists always. If El cos 2 9 > C2(8 < 8.), then such a wave exists if alE 2 1
2 >

e1 cos2 0 C2 = 11h (0), i.e., if the intensity exceeds a certain threshold intensity. For

I = 11h we just reobtain the constant phase and amplitude wave of Equation 14a. The

nonlinear plane wave can thus be written as

E = E2 e' (" 2z), x >0 (16)

where k2 is the intensity-dependent wave vector as given by Equation 15, and E2 is to

be determined form the conditions of continuity.

2.3.2.3. Nonuniform Plane and Amplitude Wave

Assume that both the amplitude and phase are now functions of x, i.e.,

E(z) = E2 (x)elfk2(xdz-oI (17)

Substituting this into Equation 10 we can separate the real and imaginary parts of the

wave equation, yielding

8.



E' -k.E 2 +(k 32 + +k 2 aIE 2 12 )E =0 (18)

from the real part, arid

2k 2 E2 + kE3 = 0 (19)

from the imaginary part. Equation 19 can be integrated right away, giving

2E' k2 = const = c, (20)

i.e., the expression on the left-hand side is an integral of motion. The solution in section
2.3.2.1 corresponds to k2 = const = 0, and the solution in section 2.3.2.2. corresponds to
both E 2 and k2 = const. Using Equations 20 and 18 we can eliminate k2 and obtain

E2 + [k 2  _2 k2 aErE2  =0 (21)
E2

Again, by multiplying Equation 21 with E2 we can find a first integral in the form

E2) 2 + [k2 C2 - 32 JE +1 1E (22)
(+ )k + PZV C

2 2 Z 2
(2

Equation 12 is a particular case when ci = 0 . The so!ution of Equation 22 can again be
reduced to elliptic integrals.

2.4 BOUNDARY CONDITIONS, FRESNEL'S AND SNELL'S FORMULAS

2.4.1 The Case c > el

We can match an incident and reflected plane wave to a nonlinear plane wave in the en-

tire 0 < 0 < 7r/2 interval. Inserting Equations 9 and 16 into Equation 6, we obtain

Eo(1 + r) = E2 e' (23)

9



from the continuity of E at x = 0 and

k Eo(1 - r) = k2 E2 ' (24)

from the continuity of E' at z = 0. By comparing the imaginary parts of Equations 23
and 24 we see that p = 0, r = real. Using Equation 23 in Equation 24, we can eliminate
E2 from Equation 24 (note that k2 also depends on E2 in view of Equation 15), yielding

kl+r - k 2  (25)

If we take the square of this equation and use Equation 8 for k1, and Equation 15 for k2

(E2 is substituted from Equation 23), then we obtain a fourth-order equation for r. It is,
however, linear in the intensity parameter I =- E./e. We can therefore express I as a
function of r, giving

( - ( ( - ! (26)
(r +1 (El

with

sin 0 - /( 2 /C 1 )2 _cos 2  (to =

sin 0 + V/(E2 /C1 )2 _cos 2  (

We can now plot I as a function of r and invert this plot graphically to obtain

r = r(I, 0,'2 , e). First we note that if a 0 (linear media on both sides of the inter-
face) then I = 0, and from Equation 26 r = r0 or r = -. Since -1< r" <0, the onlyf'0

physically meaningful solution is r = r. This is just Fresnel's formula for the reflection
of a TE wave from a linear boundary. Furthermore, the r.h.s. of Equation 26 is positive
if -I < r < ro < 0, i.e., we have to plot Equation 26 only in this interval. The result is
shown in Fig. 1. The reflection coefficient for low incident intensity coincides with that
given by the (linear) Fresnel formula. With increasing intensity it decreases monotoni-
cally and approaches -1 as I -- oo. The interface becomes less and less transparent as

the intensity increases.

10



2.4.2 The Case c. < c,

We can define a critical angle of incidence 0, for which cos 2 0, = 1. In the linear case

for 0 < 0 < 8, total internal reflection takes place and for j- > 0 > ;, ordinary reflection

takes place. In the nonlinear case we see from Equation 15 that for 8 > 8, the nonlin-

ear plane waves exist for any I, whereas for 0 < 0, they exist above a certain threshold

intensity 1,,. Also, from Section 2.3.2, the nonlinear evanescent waves exist in this inter-

val, below a certain critical intensity I.. Therefore we consider the 0 > 0, and 0 < 0,

cases separately.

2.4.2.1 0, <9 < 7r/2

In this case much of the treatment of the previous subsection holds. In particular, Equa-

tion 26 can be rewritten for this case as

I= (r -ro)(r---L) sin+ 0) (28)(,- + 1)4

where r0 is still given by Equation 27. Now 0 < " < ro < I and the r.h.s. is

positive if r < ro. Again, for I -= 0, the solution r = r0 reproduces Fresnel's formula;

otherwise we plot I in the interval -1 < r < ro. The result is shown in Fig. 2. The

reflection coefficient for low incident intensity coincides with that given by the (linear)

Fresnel formula. With increasing intensity it decreases monotonically. The intensity I =

sin2 8 (i.e., 62 + crEo = el) makes the interface transparent, and the reflection is 0. If we

increase the intensity further, the effective index of refraction becomes larger in the NL

medium than in the linear one, and the behavior is similar to that found in Equation 23

for £2 > e. Note that there is a phase change from 0 to 7r at this point.

2.4.2.2 0 < 0 < 0,

In this case the nonlinear evanescent waves and nonlinear plane waves may coexist. We

treat them again separately.

2.4.2.2.1 NL Plane Waves (NLPW)

If £2 < el and 9 < A., then from Equation 15, we see that the NLPW exists above the

threshold intensity Ih given by k2 = 0. Using that E2 = (1 + r)Eo and at threshold

r = 1, we obtain (I,,h = tE2,,/e, )

It= cos2 9 -COS 2  (0< ,< sin2  ) (29)

11



or

Cl COS2 B = e2 + c(2Eo)1h (30)

In other words, at the threshold intensity the given incident angle 0(0 < 0 < 0,) becomes

critical in the sense that E, cos 2 0 matches the intensity-dependent effective dielectric

constant of the NL medium. If we increase the intensity further while keeping 0 fixed,

the condition of total internal reflection cannot be satisfied any more.

The continuity Equations 23 and 24 remain the same for this case and, consequently,

Equation 28 also holds. The only difference is that ro, as given by Equation 27, is just a

phase factor, ro = e- 2', where

tan V = VCOs G-co5 2 9e (31)
sin 0

Since these waves exist only above a threshold intensity, they do not have a linear limit.

It is therefore more convenient to write Equation 28 for this case as

IcsG- c-s 2 O, ( sin " 0 (32)
(1 + r)2  (+ r)'

In Fig. 3 we plot this expression for a fixed 0(0 < 0 < 0,) as a function of r. The inter-

pretation of I = sin2 0,, and the phase change going from I < sin2 0, to I > sin2 0, is the

same as in 2.4.2.1.

2.4.2.2.2 NL Evanescent Waves (NLEW)

Using Equations 9 and 13 in the continuity Equation 6 we obtain

E 1 k cosh(-yo) (33)

from the continuity of E, and

ikEo(1 - r) f - y2 e'O tanh(-yxo) (34)

= k cosh( yxo)

12



from the continuity of E' at z = 0. These are two complex equations to determine r

(which is, in general, complex), p and zo as a function of 9 and Eo. Dividing Equation

34 by 33 we obtain

1-rik, T- = -y tanh(-txo ) (35)
l+r

or, expressing r from here, we get

k, + i- tanh(yx ) (36)
k, - i tanh(Yxo0 )

Hence r is a phase factor with unit modulus. Comparing the phases of both sides of ei-

ther Equation 33 or 34, we see that

r = e (37)

That is, the phase shift of the reflected wave is twice the phase shift of the transmitted

wave, and Irl = 1, i.e., we have TIR where these waves exist.

If we use Equation 37 in Equations 33 and 35, and then eliminate zo from Equation 33

with the help of Equation 35, then we obtain a biquadratic equation for tan P'. The solu-

tion yields

sin 2 0, - 2sin 2 9 ± v/sin' 0, - 8Isin 2 0 (38)
tan2  = 2sin 20

From this expression we infer the existence of a second critical angle 0, defined as

sin2 
go = I sin' 0, (39a)

2

or, since usually 0, is already a small angle, to a good approximation

00 O G,/v'2 (39b)

13



We deal with the intervals 00 < 9 < 9, and 0 < 0 < 0o separately.

* 00 <0 < 9,

In this case sin2 0, - 2 sin 2 0 < 0 and only the + sign in front of the square root in Equa-

tion 38 gives physical results. For I = 0, Equation 38 becomes identical with Equation

31 and reproduces the phase shift in total reflection for the linear case. We have two re-
quirements: the expression under the square root in Equation 38 has to be nonnegative,

which gives

sin 4 9(4I< 8Si =1 (40)
8 sin 2 9=

and the entire Equation 38 has to be nonnegative, which gives

Cos 2  -Cos 2 9

I < c (41)
2

Since 12 < I,, this means that the nonlinear evanescent waves in the 6o < 0 < 96 interval

exist if

0 < I < 12 (42)

Furthermore, since 12 = 2 1th, where th is given by Equation 29, in the interval Ih <

I < 21, h the nonlinear evanescent waves and nonlinear plane waves coexist. In Fig. 4
we plot the phase of r for a fixed 0, as a function of I. The reflectivity IrI is up to 12.

When this is viewed together with Fig. 4, it indicates the possibility of a hysteresis jump

as shown in Fig. 7. One can increase the intensity to 2 from 0 and have TIR. At this
intensity TIR is lost and the reflectivity drops by a finite amount corresponding to this
intensity in Fig. 3. If we now decrease the intensity along this line in Fig. 3, then at
I = Ilh the reflectivity is 1 and we match the reflectivity Iri = 1. However, at this point

(i.e., when TIR is restored), the phase jumps by a finite amount from 0 to a value given

by Fig. 4 at I = Ih.

0 0 <9 <00

In this case sin2 9 > 2 sin 2 0 and both signs in Equation 38 are possible. The solution
with the + sign exists for 0 < I < IL, with i given by Equation 41. The solution with
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the - sign exists if Equation 38 and its discriminant are nonnegative, giving 12 < I < 1.

Since I, > Ith, again the NLEW's and NLPW's coexist for I1h < I < It. In Fig. 5

we plot the phase of r* for a fixed 0 as a function of I. The subscript ± corresponds to

the choice of sign in Equation 38. Again, when this figure is viewed together with Fig.

3, it indicates the possibility of a hysteresis jump between the + branch and the NLPW

when the intensity is increased. If it is decreased along the NLPW branch, it matches

continuously to Ir+ 1, but now the phase jumps at both branching points. It does not

seem to be easy to excite the - branch of Fig. 5.

Figure 6 summarizes the existence conditions on the 0 - I plane. The different bound-

aries are given by Ih (0), I (0), and 12 (9). In region I the nonlinear evanescent wave

(NLEW) of 2.4.2.2.2 exists. In region II the NLEW+ (positive branch) of 2.4.2.2.2 ex-

ists. In region III the NLEW of 2.4.2.2.2 and the nonlinear plane wave (NLPW) of 2.4.2.2.1

coexist. In region IV the NLEW+ of 2.4.2.2.2 and NLPW of 2.4.2.2.1 coexist. In region

V the NLEW , NLEW_ (negative branch) of 2.4.2.2.2 and the NLPW of 2.4.2.2.1 co-

exist. In region VI only the NLPW of 2.4.2.2.1 exists. Finally, in Fig. 8, we plot the

critical angle as a function of the incident intensity as given by Equation 30. In the

regions of coexistence (III, IV, V ) one can expect bi- or multistability. Which of the

above waves is actually stable requires further investigation.

A closing remark: If, instead of a coherent incident field, the interface is irradiated by an

incoherent field, then the incident and reflected fields do not add in phase and the inten-

sity at total reflection is not 4E2 at the interface, but only 2E0. This would increase the

threshold intensity for the excitation of NLPW's from Ith to 21th, which coincides with

the cutoff intensity of NLEW's in the 9o < 8 < 8. region. Therefore, our expectation is

that the observation of a hysteresis loop in the intensity-dependent reflectivity is almost

impossible for 0o < 0 < 8,. On the other hand, for 0 < 0 < 00 the observation is possible,

since the cutoff intensity of the NLPW+ branch A > 2 1
1h.

2.5 REVIEW

We have defined a second critical angle go in the region of total internal reflection. If the

angle of incidence 0 is go < 0 < 0,, then the evanescent wave,; become cut off at a certain

intensity and go over into radiation waves in a continuous way. In the 0 < 6 < 00 region

the reflectivity may exhibit hysteresis jumps as a function of intensity.

In the next section, as an application of this general theory, we investigate nonlinear

guided waves in a symmetric slab configuration.

15



REFLECTIVITY VS. INTENSITY

I

-0 
I

Fig. 1. Reflection coefficient r versus nonlinear intensity I( = xEIo li). (Here ej =

-= (1.5)2 is the dielectric constant of the linear medium, e = e2 + ajE 2 =

(1.6)2 + alEI 2 is the dielectric function of the nonlinear medium, a is the

nonlinearity constant, Ea is the amplitude of the incident field, E is the

amplitude of the transmitted field. The plot corresponds to the analytical

expression (26) for 0 = 45° . I - Eo el is in arbitrary units.)
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REFLECTIVITY VS. INTENSITY

r

0

Fig. 2. Reflection coefficient r versus nonlinear intensity I. (The meaning of the pa-
rameters is the same as previously, but with e = (1.6) 2 , 

C2 = (1.5)2. There
exists now a critical angle, cos 2 e, = 2/EL or 8, 20 ° , such that for 9 > 0,
normal reflection and for 0 < 0, total reflection takes place. The plot corre-
sponds to the analytical expression (28) for 0 = 45° .)
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REFLECTIVITY VS. INTENSITY

r

0.

-1

I

Fig. 3. Same as Fig. 2. but for 0 = 15° , i.e., in the total reflection interval. (The
plot corresponds to the analytical expression (32) with 0 = 15° . Note that
normal reflection occurs only above a threshold intensity 1,h (given by (29)).
This can be said differently: the critical angle, as given by (29) or (30), be-
comes intensity-dependent and total reflection, which takes place at low in-
tensity, is replaced by ordinary reflection and refraction.)
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PHASE VS. INTENSITY

PHRSE

.5

0 I 12

Fig. 4. Tan 2
46 versus the nonlinear intensity parameter I. (0) is the phase shift upon

reflection. Parameter values are the same as in Fig. 3. The plot corresponds
to Eq. (38) with the upper (+) sign in front of the square-root expression.)
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44

62

0
0 12

Fig. 5. Same as Fig. 4, but fore = 70. (If e < Oo 8c/v2(-1 .10' in the presentcase) both signs in (38) exist. The upper curve corresponds to the +s sign,the lower one to the - sign in (38).)
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INTENSITY VS. THETS

INTENSITY

Ii

0 5 10 15 20 25 30
THETR

Fig. 6. Phase-plane of the reflection phenomenon from a nonlinear interface. (The
reflection can be characterized by the angle of incidence 8 and nonlinear
intensity I. Ih (0) is the threshold intensity, above which normal reflection
exists. I (0) is the limit intensity below which total reflection exits. 12 (0) isthe threshold intensity; for 12 (0) < I < 1, (0) a second branch of the totalreflection branch also exists. Since I' 8 < I() for Ith(O) < I < I (0), the
total reflection coexists with the normal reflection.)
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REFLECTIVITY VS. INTENSITY

r

-I

-II

0 INTENSITY

Fig. 7. Reflection r vs. nonlinear intensity I for total reflection and normal reflec-
tion in their region of coexistence. (The loop indicates the possibility of
bistable behavior.)
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25

THETA VS. INTENSITY

20

10

INTENSITY Imax

Fig. 8. Critical angle 6 vs. nonlinear intensity 1. (The plot corresponds to Eq. (30).)
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3. ON THE INTRINSIC PROPERTIES OF NONLINEAR

TE WAVES GUIDED BY A SYMMETRIC SLAB

3.1 INTRODUCTION

In recent years considerable theoretical effort has been devoted to the investigation of

nonlinear optical waveguides. This interest is motivated by their capability to support

soliton-type wave propagation and also to exhibit sudden switches between regimes with

different guiding mechanisms. These features have a number of potential applications.

Optical systems, in general, provide an accessible tool to study phase-transition-like phe-

nomena occurring in nonequilibrium and/or nonlinear systems. A typical device is a

resonator filled with a nonlinear medium (Ref. 1). In this case the transmission of the

system becomes intensity dependent, because of the dependence of the effective optical

length and absorption on intensity.

The purpose of this report is to analyze the optical wavequide bounded by nonlinear

media as an alternative optical system having many of the described features. In pre-

vious works, attention was mainly focused on the problem of finding appropriate exter-

nal (control) parameters and on the behavior of the system as these control parameters

are varied. Although this is an important issue, from an experimental point of view, in-

trinsic features also have to be studied to achieve a full understanding of their behavior.

Therefore, particular emphasis is placed here on revealing the mutual dependence of in-

ternal parameters which characterize a nonlinear guided wave propagating in the system.

This enables us to determine the range of variation of the parameters, as well as to es-

tablish existence criteria for the various waves.

Historically, hysteresis reflection and refraction from a single nonlinear interface was first

studied by Kaplan (Ref. 2). The evanescent wave solution given there was later success-

fully applied to the study of nonlinear surface polaritons (Refs. 3-4). After the initial

proposals on optical bistability in nonlinear waveguides (Refs. 5-6), systems with two

or more nonlinear interfaces were studied in detail on the basis' of coupled mode theory

(Ref. 7), which is valid only for weak nonlinearity. Application of exact methods to the

nonlinear slab followed thereafter (Refs. 8-12). In an interesting paper Akhmediev pre-

dicted bistable switching between different branches of a given TE mode. Based on that

work we elaborate the dependence on the propagation constant of various parameters

appearing in the solution. We show, in particular, that this mutual dependence of var-

ious internal parameters suggests how these nonlinear waves can be excited, and deter-

mines the associated field patterns completely.
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3.2 PARAMETER DEPENDENCE AND ASSOCIATED FIELD PATTERNS

Figure 9 shows the geometry of the problem under study. A slab with linear dielec-

tric constant e = eL is embedded between two identical media with Kerr nonlinearity,

= 2 -- cxE(z),2 . For TE polarization E, is the only nonvanishing component of the

electric field. It is common to assume the form EY = E(z) expi(,3z - wt)), where 3 is the

propagation constant.

Then the evanescent wave solution for guided modes in regions 2 and 3 can be written as

(Ref. 8)

E(z) = +(2/,,) , (-/k) sec h[-y(x - X2 .1)1; lxi > d (43)

Here we assume a > 0. We introduce the notation -"9 -- 0 - k2 
2 and k - w/c. -7 is

uniquely related to 3. It is a constant associated with the propagation (attenuation) of

evanescent waves along x. x2 and z3 are integration constants in regions 2 and 3, respec-

tively.

The possible wave patterns in the linear region 1 are given by

cos [xc (z - d,)i1; A

sin[rC(z - d)); B
E(z) =A (44)

cosh[r( - do)I;C; lXi < d

sinh[-2 (X - do); D

Here #0 - e1 - 32 > 0 and K , -3 2 - k2 E 1 . eK 2 ) is the constant associated
with the propagation (attenuation) of guided waves along x in region 1 for K../E < <

kV1,(kV,'e < 0). A and do are further constants of integration.

Boundary conditions require that E(z) and E'(z) be continuous at z = ±d. This yields

four relationships among the parameters in Equations 43 and 44. On the other hand,

these field expressions contain five parameters: A, z 2, x3 do, and 0. This was not a prob-

lem in the linear case: due to linearity, A cancelled from the continuity equations and

the remaining four parameters were determined completely (Ref. 13). In the linear
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waveguide, in particular, do = 0, i.e., all the field patterns are either completely sym-

metric or completely antisymmetric. Furthermore, z 2 = -X3 = -oo, so that evanescent

waves are purely exponentially decaying ones. Also, 3 is restricted to certain discrete

values (roots of the eigenvalue equations) in the interval kV'e- < 3 < kv/i', so that no

surface TE modes (hyperbolic patterns in 1) exist for /3> kV/I'.

In the nonlinear case (a 0 0) the situation changes drastically. 3 becomes an interval

continuous parameter; i.e., instead of assuming discrete values in the k/f < '3 < kx/ "
interval, as in the linear case, 1 can change continuously within discrete subintervals of
the above interval. Also, values in the region 3 > kv/?" (surface modes) become permis-
sible. This can be seen from the following treatment. With the help of the four continu-
ity equations we can express any of the other four parameters as a function of 3. Each

of these equations can, with equal rights, be regarded as a generalized eigenvalue equa-
tion of the nonlinear slab. They determine the physical domain of parameters, as well as

the existence conditions for the different types of nonlinear waves (odd, even, asymmet-

ric guided modes and surface modes).

For later convenience, and in order to bring the eigenvalue equations to their simplest
form, it is useful at this point to introduce the scaled quantities z 2 = z 2 /d, 1i3 = X3 /d,
do= do /d. These dimensionless parameters determine the extremum positions of the
field intensity distribution inside and outside the slab. We also introduce a 2 

= - --A2 k2 d2'

which is a nonlinear intensity parameter proportional to the intensity maximum in the

slab. Instead of the propagation constant 3 we define two related parameters: b 2

(k2C,_ )32)d for f < 0 < k/'e and b2 = (02 - k2 f) d 2 for/3 > k/F"-. Finally,
we introduce the parameter v2 = (' - C2 )k'd 2 , which characterizes the waveguide it-

self. Once the waveguide is specified, v is fixed. The advantage of these scaled variables
is that seemingly very different waveguides having the same parameter, v, exhibit similar
behavior in terms of the scaled parameters. Thus, the usage of these parameters reveals
universal properties of the nonlinear slab waveguide.

We now proceed to the investigation of the eigenvalue equations and the field patterns.
We investigate the different possibilities enumerated in Equation 44 separately. Further-

more, we analyze in detail only the cases when the cos or cosh solutions hold in the slab.
A omplete treatment of all possible cases is left to a separate publication (Ref. 14).
3.2.1 We begin our investigation with the case when the first line holds in Equation 44.

Then the boundary conditions allow for do= 0 and do - 0, as well.
3.2.1.1 If d= 0, the field pattern is symmetric. In this case, from the boundary condi-

tions we obtain
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2= - 3 - 1 - (v2 - b2)1/2 tanh-1[b, (v 2 - b )-"/ 2 tanb, (45)

which is our first eigenvalue equation.

Instead of a2 we use the related parameter S = a2 cos 2 b1, which is the nonlinear inten-

sity at the boundary. The other eigenvalue equation then reads as

S c V2  b_ 1  (46)COS 2 b,

Equations 45 and 46, together with d = 0, characterize the symmetric cosine wave com-

pletely, in the sense that the remaining parameters are expressed as functions of b, (i.e.,

the propagation constant #). Where in the interval kv/e < 8 < kv/ft(0 < b1 < v)

this wave may exist can be determined from the following argument. The criteria of ex-

istence are simply that S > 0 and that the argument of tanh-' in Equation 45 should be

between -l and 1. Both these requirements lead to

bI < v2 cos- b1  (47)

i.e., such waves exist in those parts of the 0 < b, < v interval where Equation 47

holds. As expected, all solutions of Equation 47 lie in this interval. For any value of v

there is always at least one such subinterval of bl, i.e., the lowest order symmetric co-

sine mode never becomes cut off. As v increases, additional subintervals may appear. In

these subintervals ]2 changes from -oo to oo as b, is changed from one boundary of the

subinterval to the other. S is zero at the boundary of the subinterval, reaches a maxi-

mum inside and then falls back to zero again at the other boundary. It is interesting to

note that at the right boundary of each subinterval the argument of tanh- I in Equation

45 is equal to 1, so that

b,(v 2 -b) - '1 / 2 tanb1 =1 (48)

This is just the eigenvalue equation for even TE modes of a linear waveguide. Also, at

these points, S = 0. This suggests the following mechanism for the excitation of these

nonlinear waves. At very small intensity S the system is essentially linear, and a guided
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wave which is similar to a linear eigenmode can be launched. If we slowly increase S

while allowing b, (#) to change according to Equation 46, then i 2 increases from -00 to-
wards +oo. At a threshold value of S = SL (SI = V2 - n 2 

7r
2 or b, = nir for the n-th

subinterval) we obtain 1 2 = 1, and a real maximum of the field distribution outside the

slab appears. At S = S,.. > S, we reach the maximum of Equation 46, and S cannot

be increased further along this branch of the dispersion curve. Thus, this mode becomes

cut off at S = S.. (or at b,.... corresponding to S..., where bl,... = -cotan b1.... ).
The other side of this branch b, < b. cannot be reached with continuous excita-
tion from the linear regime. It corresponds to two evanescent waves, excited initially

infinitely far away from the slab boundaries. Increasing the intensity S at the bound-
ary attracts these waves closer to the boundaries. Hence, they can only be excited under
conditions very different from those of a waveguide. Figure 10 shows the dispersion re-
lation (plot of Equation 46) for v = 1-r. In this case TEO and TE 2 modes are allowed.

Also shown are two typical TE2 field patterns for S < SL and S, < S < S..,=. The
guiding mechanism for S > S, is obviously different from the usual total internal reflec-
tion (TIR) of linear waveguides. It can adequately be described as self-focusing in the

nonlinear medium.

This is not the whole story, however. The effective refractive indexes on the two sides of
the slab boundary become equal if the intensity satisfies E, = C2 + aIE(d) 12 or, in our

notation, S = E."- At this intensity the boundary becomes transparent, and we might
2

expect something strange to happen. That this is indeed the case is made clear in

the next subsection.

3.2.1.2 Here we investigate the do 0 0 case, where the field pattern is asymmetric. The

analytic expression for do, resulting from the continuity equations, is

sin2 b, do= 1- b r (1-r)

- (4r(I-r)- (1 L + / (49)

Here r - cos 2 bi. In this case x, - - x3 , and these quantities are given by

S 2 b2 (1/)2 tanh-' {b(v -b 2)1/2 tan [b (iT o)} (50)
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The nonlinear intensities at the boundaries ±d, S -- a2[b, (1± do)], can be written in

the more symmetric form

- - - - (51)
v 2  2 Icos2[b1 (1 do)1 cos2[b,(1+ d )}

The criterion of existence of these asymmetric guided waves is that 0 < sin 2 6b d0 < 1,

or the argument of tanh-' in Equation 50 should be between -1 and 1, or S± > 0. All

these requirements lead to

u
2b2 < T- cos2 b1  52

i.e., such waves exist in those parts of the 0 < b, _< vv/2 (kV2 < < k v/") in-

terval where Equation 52 holds. For any value of v there is always at least one such
subinterval of b,, i.e., the lowest order asymmetric mode never becomes cut off. As v

increases, additional subintervals may appear. In these subintervals, d changes such

that 0 < b, do < ir/2, and it is 0 at both boundaries of the subinterval. The bound-
aries of these subintervals are defined by the equality sign in Equation 52. The nonlin-
ear intensity at these points is S+ = S = S1h = v2 /2, as can be seen from Equation

51. Thus, the asymmetric waves branch away from the symmetric ones at the intensity
which makes the boundary transparent. Consequently, their appearance is a threshold

phenomenon.

In Fig. 11 we have plotted the dispersion relation, Equation 51, and two typical asym-

metric field patterns developing from the symmetric TE2 mode for S > Sth. In that
part of the b, interval where the symmetric and asymmetric waves coexist, the asyr-

metric one carries less energy. This may indicate that the asymmetric wave is generally
more stable and that the part of the dispersion curve of the symmetric modes above Slh
is difficult to reach.

This dispersion curve together with the dispersion curve of the symmetric TE2 mode

of Fig. 10 hints at the following interesting possibility. If the intensity at the boundary

is increased along S, then at S,,.I we reach the maximum of the S, branch. Denote
the corresponding b, value by b") . If we try to increase the intensity further, the sys-

tem may jump over to the S_ branch, along which the intensity can be increased up to
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the value S .2. At this value this type of asymmetric mode becomes cut off. If we lower

the intensity along the S_ branch we reach the minimum at a point where b, = b( ".

This is the same value where the S, - S_ jump occurs, but with the role of the upper

and lower boundaries interchanged. The system at this point may jump over to the sym-

metric TE 2 branch of Fig. 10. (Actually, these two figures should be viewed together.

Only for clarity are they represented separately.) If now the intensity is increased along

this branch, we eventually reach Sth. Further increase of the intensity excites the S,

branch of the dispersion curve. The excitation loop completed this way would then con-

tain bistable jumps with hysteresis. Since the asymmetric waves carry less power than

the symmetric ones, lowering the intensity along S_ requires less input power than in-

creasing it along TE 2 . This is in good qualitative agreement with the experimental ob-

servation of Ref. 15. It is also clear that this type of bistability cannot occur in the low-

est order mode, since S, and S_ branching away from TEo (the left portion of Fig. 11)

do not exhibit this structure. This conclusion is also supported by the experiment.

3.2.2 Except that the v dependence plays a more important role, the antisymmetric sine

wave obtained when the second line holds in Equation 44 has similar properties to the

ones discussed above. Therefore, we do not elaborate further on this case. A complete

discussion is given in Ref. 14.

3.2.3 We next investigate the case when the third line holds in Equation 44, the case of

the cosh wave. Since the boundary conditions now allow d0 = 0 only, the wave is com-

pletely symmetric. The analytic expressions for the other parameters are

2  -]i 3 + 2 + (b +v 2) -
1/2 tanh- ' [b2 (b' + v2) - /2tanhb] (53)

For the nonlinear intensity at the boundary, S = a2 cosh 2 b2 , we have

S = +5)cosh y b2

The criterion of existence is S > v, or the argument of tanh- ' in Equation 53 should be

less than 1, which is fulfilled in the entire b2 > 0(03 > kV'7) interval for all v. The inten-

sity for b2 = 0 (3 = kle-,) is v, and this value coincides with the intensity of the lowest

order symmetric cosine mode at b, = 0 (P = kVie"). This suggests that the symmet-

ric surface modes described by the hyperbolic cosh solution can be reached by increasing
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the intensity of the lowest order symmetric cosine mode and tuning from < k,/-- to
3 > kvy . The appearance of the surface mode is a threshold phenomenon requiring the

minimum nonlinear intensity Sth = v2 . lVigure 12 shows a plot of the dispersion relation,

Equation 54, and a typical field pattern. If b2 is increased, S increases first, reaches a
maximum S = Smx at a certain b2 = b2.m ax, and then decreases monotonically. Obvi-
ously, only that part of the dispersion curve for which S < S... can be reached by con-
tinuous excitation from the /3 < kv,'c regime. At this point this surface mode becomes
cut off. The decreasing part corresponds to a very different excitation condition: surface
modes are excited outside the slab. It is interesting to observe the behavior of Z2 as a
function of b2 . As b2 is increased, ]2 increases first, starting from the value I at b2 = 0,

reaches a maximum at b2 = b2.m.x and decreases again towards i2 = 2 as b2 oo. That
is, the position of the maximum of the field distribution always remains in the vicinity of
the slab boundary, justifying the name "surface mode."

3.2.4 The case when the fourth line holds in Equation 44 (hyperbolic sine wave) is dis-
cussed in Ref. 14.

3.3 CONCLUSION

The symmetric slab waveguide bounded by nonlinear media can support symmetric, an-
tisymmetric and asymmetric guided waves and surface modes. The latter two have no
counterpart in the linear case. Their appearance is a threshold phenomenon: a thresh-
old intensity at the slab boundary is needed for their excitation. By appropriate scaling
of the parameters characterizing the different waves, we cast the dispersion relations of
these waves into particularly simple form. This enables us to establish existence condi-
tions for various types of waves and to determine the range of variation of all the pa-
rameters involved. Also, the interpretation of the results is facilitated. For example, the
threshold intensity for the appearance of asymmetric waves is the intensity which makes
the boundary transparent. The threshold intensity for the appearance of a surface mode
is the intensity where the lowest order guided mode terminates. The dispersion relations
in this scaled form are also very suggestive as to the excitation of these waves. At very
small values of the nonlinear intensity at the boundary, the dispersion relations reduce
to the eigenvalue equations of a linear waveguide. It is known how an eigenmode of a
linear waveguide can be launched. Upon increasing the nonlinear intensity adiabatically,
one can consecutively excite different portions of that branch of the dispersion relation
which originates from a given linear limit. Furthermore, our results seem to indicate the

possibility of a bistable loop in the excitation process of higher order modes in qualita-
tive accord with recent experimental findings.
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4. INTENSITY DEPENDENCE OF TOTAL VERSUS DIFFERENTIAL

IONIZATION RATES IN ABOVE-THRESHOLD IONIZATION (REF. 16)

In above-threshold ionization, total ion yields conform with lowest order perturbation
theory up to much higher intensities than the individual peaks of the electron spectrum.
This fact is explained and an estimate of the intensity is derived for which the total ion-
ization rate ceases to follow lowest order perturbation theory. The derivation uses argu-
ments based on simple dimensional analysis.

Multiphoton ionization of atoms by intense laser fields has been investigated for many
years (Ref. 1). In all cases, for intensities up to about 10" W/cm 2 , the total ionization
rates below saturation as measured via the total ion yields were found to be propor-
tional to the Nth power of the laser intensity I, with N the minimum number of laser

photons which the atom has to absorb to be ionized. This JN- behavior is readily ex-
plained on the basis of lowest order perturbation theory with respect to the laser field.
On the other hand, the more recent experiments recording the energy spectra of the
ejected electrons start revealing markedly nonperturbative features for intensities as low

as l0'lW/cm2 (Refs. 17-22). A typical ATI (above-threshold ionization) electron spec-
trum exhibits equally spaced peaks, separated by the energy hw of a laser photon, at

energies

SN = e + nhw (n = 0, 1,2...) (55)

While perturbation theory suggests that the height of the n" peak be proportional to
IN +', experiments show that for intensities > im 1013W/cm 2 this is no longer so: the

lowest peak (n = 0) is no longer the dominant one (peak switching); moreover, the low-
order peaks become, for increasing intensities, one at a time completely suppressed (peak
suppression). The heights of the individual peaks approximately scale with IN- , (Ref.

17) for most n (the lowest peak with a power less than this) rather then with IN+" .

Deng and Eberly (Ref. 23) identified an intensity I.., - 10 2 W/cm 2 such that for I
>- Io, lowest order perturbation theory ceases to be valid for the individual peaks. At
the same time, it still holds perfectly well for the total ionization rates (Ref. 24). The
same behavior has also been observed in numerical analyses (Ref. 25). It is the pur-

pose in this report to make this apparent puzzle plausible and to identify an intensity

.. , >> I,., so that for I Z I., lowest order perturbation theory (LOPT) becomes in-
applicable for the total rate. We will proceed on the basis of simple dimensional analysis
without assuming any specific model.
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We first notice that the behavior just described appears to be a quite common phe-

nomenon in multiphoton physics. We may summarize it by stating that often the total

transition rate for some process in the presence of a laser field can be calculated by per-

turbation theory for much higher intensities than the corresponding differential transi-

tion rates. For example, for the case of the free-electron laser, the probability p, that

the electron emits n laser photons while it travels through the undulator is a very com-

plicated function of the laser intensity and only calculable by LOPT for extremely low

intensities. On the other hand, the gain, which is proportional to '= _ np, can be

obtained from LOPT up to intensities which are higher by about eight orders of magni-

tude (Ref. 26). Another well-known example is the Kroll-Watson sum rule for electron-

potential scattering in the presence of a laser field, which says that under certain condi-

tions the total cross section a = E an (a. being the cross section with accompa-

nying emission of n laser photons) just equals the cross section af,.o in the absence of

the laser field (Ref. 27). In this case LOPT obviously yields a = a '.. while it is not

applicable for the ar .

Before returning to ATI we shall extensively consider laser enhancement of nuclear t-

decay as an additional example. This is a particularly convenient case because the decay

rate has been evaluated, and LOPT has been proven to hold. The very simple result for

the field-induced enhancement of the decay is (Ref. 28)

for E < E, and co <: Mc2 . Here E is the field strength of the (circularly polarized)

laser field, E. = m2c3 /el .- 1.6 x 101 V/em the so-called critical field, m the elec-

tron mass and co the nuclear energy release of the decay minuq the electron's rest mass

energy. The quantity k is a numerical factor (k = 35/64 for allowed 6-decay, and k =
105/32 for a first-order forbidden decay). In contrast to the simple form (Eq. 56) of the

enhancement of the total rate, the differential decay rate with respect to the energy EO

of the emitted electron, viz., drf,,d/dEo, has a very complicated dependence on the

field strength (Ref. 29) and cannot be obtained from perturbation theory except when

EIE is extremely small.

We will now try to rederive Equation 56 from dimensional considerations. Let us first

list the relevant variables: besides m, c, A, and e, there is the field strength E and fre-

quency w of the laser field, the nuclear energy release co and the extent R of the nuclear
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wave function. A complete set of dimensionless quantities that can be formed out of
these is given by E/E., co/mc 2, Vm-"R/lh, a = e2/ h c, and eE/mwc. We now make the
following assumptions or observations:

(a) A glance at the form of the matrix element that has to be calculated to obtain
the exact result (Eq. 56) makes clear (Ref. 28) that the enhancement will de-
pend on even powers of eE and that this is the only occurrence of the charge e.

There is then no additional dependence on a = e2/he;
(b) the enhancement is a quantum effect, so that we should have p -- 0 for h --+ 0;
(c) since normally eo/mc 2 << 1, and w/mc2 << 1, the leading contribution to p

is nonrelativistic, i.e., independent of c;
(d) the dynamics are quasistatic, i.e., the enhancement depends only on the field

strength E and not explicitly on the frequency w of the laser field.

By assumption (d), any dependence of p on the vector potential a = eE/w or on the di-
mensionless parameter eE/mwe is ruled out. This leaves us with the three dimensionless
quantities E/E., Co /mc 2 , V/m-R/R to build the dimensionless enhancement p. Obser-
vation (a) forces the leading contribution to p to be proportional to (E/E)I 2 , (c) then
makes necessary the factor of (Mc 2 /C0 )3 in order to cancel the dependence on c. This
yields the result (Eq. 56) which satisfies assumption (b). The latter would still be sat-
isfied with an additional factor of V/'e-R/h; however, v/'meoR/h _ 0(10-3), so this
would not be the leading contribution. Assumption (b) is also satisfied when the r.h.s.
of Equation 56 is multiplied by arbitrary inverse powers of V/RiiR/h. However, the en-
hancement p would then become proportional to inverse powers of the nuclear radius R.
This is highly implausible in view of the fact that the matter-field coupling can be taken
as F. E. We thus see that the assumptions (a) to (d) essentially prescribe the form (Eq.
56) for the leading contribution to the enhancement. Moreover, assumption (a) is really
an observation. The same applies to assumption (b), although in a less obvious way: if
one describes the #-decay by the quartic Fermi-interaction, then the laser field couples
to the charged particles taking part in the process, notably the electron. This has two
effects: first, a classical acceleration of the electron after the decay has taken place. This
distorts the differential decay rate, but leaves the total rate unaffected; second, the decay
rate itself is altered. This comes from off-shell contributions of the electron propagator
adjacent to the four-Fermi-vertex. Hence, any enhancement of the decay must be quan-
tum mechanical and proportional to some positive power of A. Assumption (c) is justi-
fied by noticing that relativistic corrections would have to involve positive powers of the
quantity e0 /mc

2, which is small for the small nuclear energy releases we are considering.
(For eo /mc 2 ~ 1, assumption (c) and Equation 56 do not hold.)
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The quasistatic assumption (d) is crucial for the above analysis. It is highly plausible

for nuclear 6-decay, which proceeds on a time scale much faster than the time scale W- I

of the laser field and on a spatial scale much smaller than the laser wavelength. The di-
mensionless quantity ea/mc2 = eE/mwc (the occurrence of which in the total decay rate

is ruled out by assumption (d)) plays, however, the dominant role in the interaction be-
tween the electron and the laser field after the decay and, consequently, in the differen-
tial decay rate. This is obvious by noticing that the solution of the nonrelativistic equa-

tion of motion m- = eEsinwt is v/c= -(eE/mwc)coswt + const. Hence the parameter
eE/mwc governs the large-scale motion of the electron in the laser field (which is of the
order of the wavelength).

We now apply the same reasoning to above-threshold ionization. For low enough intensi-

ties the ionization rate per unit time allows for a power series expansion in terms of the

intensity I
Go 00

r = r.= r(i + r./ro) (57)
ft=O n=1

where r. jI + P', with N as defined above. The question then, which we shall try to

answer, is for which intensity I., the leading correction r, /ro to the I" - behavior will
become important. (For the individual peaks this intensity is given by I,,,.) The prob-
lem is almost analogous to field-enhanced #-decay. The most notable difference is that

0-decay takes place also in the absence of the field, whereas in ATI ro - I". If we de-
scribe the atom by just a radius R and an ionization potential V (replacing co) the list
of parameters is the same as above, although some of their values are different. Conse-

quently, the set of dimensionless quantities is the same. We again make the assumptions
(a) to (d). Assumption (a), provable by inspection in the case of 6-decay, will hold for

ATI as long as no additional energy or length scales enter the problem, so that all occur-
rences of the elementary charge which are of atomic origin are hidden in the constants
R and V. This will not be so if there are near-resonant intermediate states. Even then,
however, these may well predominantly affect ro and much less so the ratio r, /to. As-
sumption (b) appears to be debatable since, after all, ionization can follow completely

classical, chaotic routes (see, e.g., Ref. 30). However, we will see below that this hardly
affects our estimate (as long as we do not expand our list of relevant parameters). There

is no problem with assumption (c). Assumption (d) is less well satisfied for ATI than for
/3-decay, but should still be safe, since the atomic length scale is much smaller than the

laser wavelength.
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It is then obvious that we obtain the same result as before for the leading correction to

the total ionization rate, viz.,
r, = ,(E)2 h 2  (58)

f, MV 3

with a different undetermined constant k'. Assuming 0(k) = 1, we have o(r,/r 0) = 1
for

(E) 2  V V\ 3 (hc\ ( V \3
( ,) -T- -j e ) (5)

where ED = e/ag(ao = h 2/Me 2) is the Bohr field and II = cE/4r = 7.1 x 1010W/cM2

the corresponding intensity. For V - 10eV this yields I.., - 5 x 10-21, 101 6 W/cMn2 .

This defines the intensity It >> It mentioned in the Introduction. Equation 59 is
the main result of this section. It explains the observed persistence of the I" behavior
of the total ionization rate, as opposed to the nonperturbative behavior of the ionization
rate into individual peaks, and predicts an order of magnitude for the intensity for which
corrections will become important.

Assumption (b) could be relaxed to allow for r, /ro to be independent of t or even pro-
portional to negative powers of t as long as r , is proportional to a positive power. The
r.h.s. of Equation 58 would then be multiplied with some power of the dimensionless
quantity VmVR/A. However, for V = 10eV and R = 10-s1cm we have V/m'VR/h = 1.15,
so that the order of magnitude of r /ro is unchanged. If r, /ro is considered to be re-

lated to an (N + 1) - quantum process, the expression given in Equation 58 seems to be
the more logical one. It can readily be checked that the leading relativistic corrections to

r,/ro are very small.

It should be emphasized again that our assumption (d) implies that the total ionization
rate is independent of the quantity eE/mwe = ca/mc2 . This latter quantity character-
izes the ponderomotive potential, which has a very significant impact on the ATI elec-
tron spectrum for intensities I > I.., (Ref. 31). Since, however, the former is related
to the large-scale quivering motion of an electron in a laser field, it should play no role

in the total ionization rate. Hence, even when many of the low energy peaks of the elec-
tron spectrum are already suppressed, the total rate still is proportional to N. For in-
tensities up to 1015W/cm 2 , this has been experimentally observed in some cases (Ref.

24). As has been remarked by Lomprd et al. (Ref. 22), it may therefore be misleading
to think of the ponderomotive potential as added to the ionization potential.
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Of course, the predictive power of a result derived by dimensional arguments is limited.
Should the experimental value for ,.,, turn out to be in major disagreement with Equa-
tion (59), this could be due to (1) a value of the numerical factor k' significantly differ-
ent from unity, (2) more parameters than assumed above playing a decisive role or (3)
any of the assumptions (a) to (d) being violated. Any of these findings would be of in-
terest by themselves. In any event, since an experimental value is presently not known,
Equation 59 gives an estimate of where one might expect deviations from the P' be-
havior.
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